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Here we have omitted the terms not containing the second derivatives of the generalized
coordinates in expression (3,6) and the third derivatives in expression (3, 7), From (3.6),
(3.7) and (3,4) we obtain the equations of motion in the independent generalized coor-

dinates z and vy

. y‘ .
2 4 g2 .:_ @D+ =0, yP+a—E@+a=0

They agree with the equations of motion obtained in [8] by another method,

1.

2.
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We study 2 linear and a perturbed system; in the latter the argument is trans-
formed, Under the assumption that the trivial solution of the linear system is
stable, we ascertain the conditions under which the trivial solution of the perturbed
system also will be stable,

Let 7t &) =1 (t. 5. E:s... Ep) (B = 1,2, ..., p). where [, E; &, ..., £p are m=dimene

sional vectors, We consider the following two mth-order systems: the linear one

y' = 4 (t) Yy (1)

and the perturbed one (see [1])



146 © V.P.Skripnik

Z()=A @) z) T [ z (P (& z (1)) )

where 4 is a square matrix and @k are wansformations of the argument, We study the
stability of the wivial solution of system (2) which is to be undestood differently in each
of the cases to be considered, We assume that the trivial solution of system (1) is stable,
Let us ascertain the conditions under which the trivial sotution of system (2) will be
stable,

Integrals are everywhere understood in the Lebesgue sense, Measurability, if it is not
stipulated, also is understood in the Lebesgue sense, The symbol || || denotes the norm
of a vector or of a matrix, which equals the sum of the absolute values of the elements,
By Y (¢) we have denoted the matrix which is a solution of system (1), satisfying the
initial condition Y (%) = E, where £ is the unit matrix,

Let us assume that the following conditions, which we call conditions o, , are fulfilled
for system (2). The matrix 4 (¢) is defined, continuous, and bounded for : & [t, >),

{14 (|| < M; the components of the vector-valued function f (¢, &) are defined and
continuous for ¢t & [to, oc) and || E; || < A, where R > 0; there holds the inequality

P
Lf (6 B IS D) 8 D%, ®)

k==l
where gx () are continuous functions and

P
k=]

the functions o (¢, &) are defined for ¢ & [t, o) and || £ || < R, satisfy the inequalities
Px{t, §) < t,and have continuous partial derivatives in all the variables; there exst
numbers ¢, ¢ > 0 such that <

[+

7

d
S Ot B>

For the given case, as the set of initial vector-valued functions we take a set Z which
consists of continuous m-dimensional vector-valued functions, bounded for ¢ < ¢, . The
trivial solution of system (2) is said to be stable relative to Z if for any ¢ >0 there
exists 8§ > 0 such that the solution of system (2), corresponding to any initial vector-
valued function z & Z such that || z || < §, satisfies the inequality || z|j<Ce for ¢t 2.
to. 1f moreover lim z (¢) = 0 as ¢t — oo, then the trivial solution of system (2) is said
to be asymptotically stable relative o Z.

Theorem 1, Assume that

1) conditions w, are fulfilled for system (2);
2) matrix 4 () is periodic or is such that

spA(R)dT>p> — oo

Sl

3) the integrals @™
S gy (v)dr
la

converge. Then from the stability of the trivial solution of system (1) follows the stabi-
lity relative to Z of the trivial solution of system (2).
Proof, Assume that the trivial solution of system (1) is stable, We take 2 number r
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such that the inequalities o — ¢ (M + N)r > 0, 0 < r < R are fulfilled, We can find
a number a (see 2P such that || Y(©Y 1 (r) || S e for t E[t, »), T E [to, t] . We
denote P ®
b= 2 j‘ g, (t)de
Kes=l o

By virtue of the stability of the trivial solution of system (1) we can find numbers 6 > 0
and §, > 0, satisfying the inequality (6 + ab §,) exp (ab) < r, such that if the solution
¥ of system (1) satisfles the inequality || y (%) |{ << 8, at the initial instant, then
Ny @< for t € [t, o0) , Let us consider a subset Z, of set Z, consisting of vector~
valued functions satisfying the inequality || z || < §,. From [3](Theorem 2,15) follows
the existence of a solution of system (2) for any initial vector-valued function : € Z1.
Let us show that each such function is infinitely continuable,

We assumne the opposite, Then there exist a solution z(?) and a number 7 > % such
that jiz (1)l =r, while ||z () |l <r fort & |, T), For t € [¢t, T] we have

d /]
d_tqah' (t, z(t) = ot P t, z () <+
m
i2 3‘:7%(:, 2@z O)>a—clz OD>a—c(M+Nr
-]
Therefore, for ¢ & {t,, 7] the functions ¢x (f, z (¢)) have inverses which we denote by
Dy (2) , respectively, The functions @, (t) are defined and continuously differentiable
on the intervals [ (fo, = (t)), Px (T, z (T))] , respectively, We define these functions
in such a way that they are continuously differentiable on the intervals [gy (2, z (k)),
7] and, that their derivatives are positive,

For a given solution z the equality
t

z(@) =y @)+ S Y @)Y (v) f (v, (9, (v, (V) &7 (4
to
is valid for t & [to, T}, where y is a solution of system (1) with the initial condition
y (to) = z (o) ; tor t € [t, 7] , we have

p t
1z OI<8+abbi+a D { g, (@ () O @Iz @
Jym=), to
and, consequently,
p P
jz (@) <+ abdi)exp|a 2 S g, (® d-r) < (5 + abdy) exp (ab)
km] @ (10}

Therefore, || z (T) {| < r. This signifies that the solution z () is continuable onto the
whole singular semi-interval [¢, o) and that the inequality || z (n II'C (8 + ab b))
exp (ad) is valid for t & [t,, o). Therefore, the trivial solution of system (2) is stable,
Theorem 1 is proved,
Theorem 2., Assume that

1) conditions w, are fulfilled for system (2);

2) mamix A4 (¢) is periodic;

3) the integrals
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o0
S g, (v dT
converge ; o
4) the functions ¢ — @k (. ) are bounded for ¢ & [z, ), || || <R .
Then from the asymptotic stability of the trivial solution of system (1) follows the
asymptotic stability relative to Z of the trivial solution of system (2).
The validity of Theorem 2 follows from the inequality

P o
fz @< mexp (b1 Z S £ (f)dt)
kel ty
where q;, b, and v are certain positive numbers, which in turn follows from equality (4)
if the initial conditions are sufficiently small,

1f the transformations ¢y of the argument do not depend upon the solution, then as the
set Z we can take the set consisting of vector-valued functions whose components are
Borel measurable,

Let us now assume that the following conditions, which we call conditions w,, are ful-
filled for system (2), The matix 4 (1) is defined and bounded for t & it,. o0) and its
elements are measwrable on any finite interval [¢,, T): the vector-valued function
f (t, Ek) is defined for ¢ & 2y, oc) and || Ex |i = R. where R > 0, for fixed i its com-
ponents are measurable in ¢ on any finite interval [¢,, 7], while for fixed ¢ they are
continuous in the §,; inequality (3) holds, where gx (z) are measurable functions on any
finite interval [t,, T] and are bounded for t & [t,, oo); the functions ¢y (¢, &), bounded
for ¢t € [t,, oo) and || § || < R, satisfy the inequanties ¢y < ¢, and for fixed £ they
are measurable in ¢ on any finite interval [t,, 7], while for fixed ¢ they are continu-
ous in §; the inequalities |y (¢, 3) —t| << hx (¢} | £ 1 hold, where ky () are funce
tions which are measurable and integrable on any finite interval [4, T] .

By Z,, where ) is a nonnegative number, we denote the set of m-dimensional vector-
valued functions, defined for te(—2, t,] and satisfying the following conditions: if
1 EZ, and t'. t" € (— o0, 1,], then l{z (t") — z () || <A[t" — ¢ |. For the given
case we take the set Z, as the set of initial vector-valued functions, The trivial solution
of system (2) is said to be stable relative to Z, if for any ¢ > 0 there exists § > 0 such
that the solution of system (2), corresponding to any initial vector-valued function z: & Z,
such that [[z() | < R and || z(t) || < 8, satisfies the inequality |z ]l <e fort> ¢ ,
If moreover lim z (t) = 0 as ; — oo, the trivial solution of system (2) is said to be asym-
ptotically stable relative to Z,.

Theorem 3, Assume that

1) conditions w, are fulfilled for system (2);
2) matrix 4 (t) is periodic or is such that
t

SspA(t)dr>p>-—ao
ta
3) the integrals

S g (v) dr, S g, (M h (V) dr
to to

converge,
Then from the stability of the trivial solution of system (1) follows the stability rela-
tive to Z, of the wivial solution of system (2) for any 2> 0.
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To prove Thearem 3 we wse equality (4) and direct estimates, The theorem on asym-
ptotic stability can be formulated analogously,
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We consider the problem of optimizing phase coordinate bounds, We obtain the
conditions for the solvability of the problem and establish the form of the opti~
mal observation laws, The paper is closely related to [1, 2]. The probiem of
optimizing the observation process has been studied from another viewpoint in
(s, 4]1.

1, Let a plant's phase coordinate vector z (¢) from an » ~dimensional Euclidean space
Ry be the solution of the system of equations

=A@z + b)), z(0)=uz (A (1.1)
The vector y (t) accessible to observation is given by the relations
dy () =h(t) H(@®)z(t)dt+ a(t)dE(t), y(0)=0 (1.2)

The elements of the mamices 4 (¢), H (¢), ¢ (¢) and b (¢) are continuous functions, The
random variable z (0) has a Gaussian distribution with the covariance matrix

Do = M (zo — Mz0) (zg — Mzy)7, Dy >0

Here the prime is the sign for wansposition, 3 is the mean, the symbol 1, > 0 signifies
the positive definiteness of mawrix D,. The Wiener process  (¢) does not depend upon
z (0), and the matrix o () ¢’ {(t) > 0,0 < ¢ < 7. Without loss of generality [2] we can
take the dimension of vector y (¢) equal to #. The control of the observation process is
effected by choice of the scalar function / (¢). We consider the linear combination
q'z (T) (the nonzero vector ¢ € Ry) is specified), Let D (I be the covariance martrix
of the conditional distribution of vector z (7) under condition y (s). 0 < s < T.
Problem 1., Determine the function v (/) = A?(t) (the optimal observation law)
which minimizes the expression ¢'D (1) q (1.3)



